Write a review
Save 16%

Grokking Deep Reinforcement Learning (Paperback)

9781617295454
MRP: 4,42911
You Pay: 3,76474
You save: 664.37
Leadtime to ship in days (default): Usually Delivers in 15 days
Ships Worldwide
Reward points: 38 points
+

eBook orders are processed and delivered within 24 hours. Because they are not returnable, eBook orders are non-refundable.

Grokking Deep Reinforcement Learning uses engaging exercises to teach you how to build deep learning systems. This book combines annotated Python code with intuitive explanations to explore DRL techniques. You’ll see how algorithms function and learn to develop your own DRL agents using evaluative feedback.

Summary
We all learn through trial and error. We avoid the things that cause us to experience pain and failure. We embrace and build on the things that give us reward and success. This common pattern is the foundation of deep reinforcement learning: building machine learning systems that explore and learn based on the responses of the environment. Grokking Deep Reinforcement Learning introduces this powerful machine learning approach, using examples, illustrations, exercises, and crystal-clear teaching. You'll love the perfectly paced teaching and the clever, engaging writing style as you dig into this awesome exploration of reinforcement learning fundamentals, effective deep learning techniques, and practical applications in this emerging field.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
We learn by interacting with our environment, and the rewards or punishments we experience guide our future behavior. Deep reinforcement learning brings that same natural process to artificial intelligence, analyzing results to uncover the most efficient ways forward. DRL agents can improve marketing campaigns, predict stock performance, and beat grand masters in Go and chess.

About the book
Grokking Deep Reinforcement Learning uses engaging exercises to teach you how to build deep learning systems. This book combines annotated Python code with intuitive explanations to explore DRL techniques. You’ll see how algorithms function and learn to develop your own DRL agents using evaluative feedback.

What's inside
    An introduction to reinforcement learning
    DRL agents with human-like behaviors
    Applying DRL to complex situations

About the reader
For developers with basic deep learning experience.

About the author
Miguel Morales works on reinforcement learning at Lockheed Martin and is an instructor for the Georgia Institute of Technology’s Reinforcement Learning and Decision Making course.
 

Ebook License

End-User Warranty And License Agreement

1. Grant Of License

Manning Has Authorized The Download By You Of An Unrestricted Number Of Copies Of The Electronic Book (Ebook) In Any Of The Available Formats. Manning Grants You A Nonexclusive, Nontransferable License To Use The Ebook According To The Terms And Conditions Herein. This License Agreement Permits You To Install The Ebook On Any And All Your Devices For Your Personal Use Only.

2. Restrictions

You Shall Not: (1) Share, Resell, Rent, Assign, Timeshare, Distribute, Or Transfer All Or Part Of The Ebook Or Any Rights Granted Hereunder To Any Other Person; (2) Duplicate The Ebook, Except For A Single Backup Or Archival Copy; (3) Remove Any Proprietary Notices, Labels, Or Marks From The Ebook; (4) Transfer Or Sublicense Title To The Ebook To Any Other Party.

3. Intellectual Property Protection

The Ebook Is Owned By Manning And Is Protected By United States And International Copyright And Other Intellectual Property Laws. Manning Reserves All Rights In The Ebook Not Expressly Granted Herein. This License And Your Right To Use The Ebook Terminate Automatically If You Violate Any Part Of This Agreement. In The Event Of Termination, You Must Remove The Original And Any Copies Of The Ebook From All Your Devices.

4. Source Code Supplementary Material

Any Source Code Files Provided As A Supplement To The Book Are Freely Available To The Public For Download. Reuse Of The Code Is Permitted, In Whole Or In Part, Including The Creation Of Derivative Works, Provided That You Acknowledge That You Are Using It And Identify The Source: Title, Publisher And Year.

5. Limited Warranty

Manning Warrants That The Ebook Files, A Copy Of Which You Are Authorized To Download, Are Free From Defects In The Operational Sense That They Can Be Read By A Pdf Reader Or Epub Reader, Or Other. Except For This Express Limited Warranty, Manning Makes And You Receive No Warranties, Express, Implied, Statutory Or In Any Communication With You, And Manning Specifically Disclaims Any Other Warranty Including The Implied Warranty Of Merchantability Or Fitness Or A Particular Purpose. Manning Does Not Warrant That The Operation Of The Ebook Will Be Uninterrupted Or Error Free. If The Ebook Was Purchased In The United States, The Above Exclusions May Not Apply To You As Some States Do Not Allow The Exclusion Of Implied Warranties. In Addition To The Above Warranty Rights, You May Also Have Other Rights That Vary From State To State.

6. Limitation Of Liability

In No Event Will Manning Be Liable For Any Damages, Whether Arising For Tort Or Contract, Including Loss Of Data, Lost Profits, Or Other Special, Incidental, Consequential, Or Indirect Damages Arising Out Of The Use Or Inability To Use The Ebook.

7. General

This Agreement Constitutes The Entire Agreement Between You And Manning And Supersedes Any Prior Agreement Concerning The Ebook. This Agreement Is Governed By The Laws Of The State Of New York

Author
Miguel Morales
Binding
Paperback
Condition Type
New
Country Origin
USA
Edition
1
Gift Wrap
Yes
Leadtime to ship in days (default)
Usually Delivers in 15 days
Page
447
Publisher
Manning Publications
Year
2020
Find similar

No reviews found

Possibly you may be interested
  • Top Sellers of 2024
  • Popular Now
  • Recently Viewed