Write a review
Save 15%

Privacy-Preserving Machine Learning

9781617298042
MRP: $5999
You Pay: $5099
You save: $9.00
Leadtime to ship in days (default): Usually Delivers in 15 days
Ships Worldwide
Reward points: 45 points
+

eBook orders are processed and delivered within 24 hours. Because they are not returnable, eBook orders are non-refundable.

In Privacy Preserving Machine Learning, you will learn:

  • Privacy consideations in machine learning
  • Differential privacy techniques for machine learning
  • Privacy-preserving synthetic data generation
  • Privacy-enhancing technologies for data mining and database applications
  • Compressive privacy for machine learning

Privacy-Preserving Machine Learning is a comprehensive guide to avoiding data breaches in your machine learning projects. You’ll get to grips with modern privacy-enhancing techniques such as differential privacy, compressive privacy, and synthetic data generation. Based on years of DARPA-funded cybersecurity research, ML engineers of all skill levels will benefit from incorporating these privacy-preserving practices into their model development. By the time you’re done reading, you’ll be able to create machine learning systems that preserve user privacy without sacrificing data quality and model performance.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the Author

J. Morris Chang is a professor in the Department of Electrical Engineering of University of South Florida, Tampa, USA. He received his PhD from North Carolina State University. Since 2012, his research projects on cybersecurity and machine learning have been funded by DARPA and agencies under DoD. He has led a DARPA project under the Brandeis Program, focusing on privacy-preserving computation over the internet for three years.

Di Zhuang received his BSc degree in computer science and information security from Nankai University, Tianjin, China. He is currently a PhD candidate in the Department of Electrical Engineering of University of South Florida, Tampa, USA. He conducted privacy-preserving machine learning research under the DARPA Brandeis Program from 2015 to 2018.

G. Dumindu Samaraweera received his BSc degree in computer systems and networking from Curtin University, Australia, and a MSc in enterprise application development degree from Sheffield Hallam University, UK. He is currently reading for his PhD in electrical engineering at University of South Florida, Tampa.

Table of Contents

PART 1 - BASICS OF PRIVACY-PRESERVING MACHINE LEARNING WITH DIFFERENTIAL PRIVACY
1 Privacy considerations in machine learning
2 Differential privacy for machine learning
3 Advanced concepts of differential privacy for machine learning
PART 2 - LOCAL DIFFERENTIAL PRIVACY AND SYNTHETIC DATA GENERATION
4 Local differential privacy for machine learning
5 Advanced LDP mechanisms for machine learning
6 Privacy-preserving synthetic data generation
PART 3 - BUILDING PRIVACY-ASSURED MACHINE LEARNING APPLICATIONS
7 Privacy-preserving data mining techniques
8 Privacy-preserving data management and operations
9 Compressive privacy for machine learning
10 Putting it all together: Designing a privacy-enhanced platform (DataHub)

Ebook License

End-User Warranty And License Agreement

1. Grant Of License

Manning Has Authorized The Download By You Of An Unrestricted Number Of Copies Of The Electronic Book (Ebook) In Any Of The Available Formats. Manning Grants You A Nonexclusive, Nontransferable License To Use The Ebook According To The Terms And Conditions Herein. This License Agreement Permits You To Install The Ebook On Any And All Your Devices For Your Personal Use Only.

2. Restrictions

You Shall Not: (1) Share, Resell, Rent, Assign, Timeshare, Distribute, Or Transfer All Or Part Of The Ebook Or Any Rights Granted Hereunder To Any Other Person; (2) Duplicate The Ebook, Except For A Single Backup Or Archival Copy; (3) Remove Any Proprietary Notices, Labels, Or Marks From The Ebook; (4) Transfer Or Sublicense Title To The Ebook To Any Other Party.

3. Intellectual Property Protection

The Ebook Is Owned By Manning And Is Protected By United States And International Copyright And Other Intellectual Property Laws. Manning Reserves All Rights In The Ebook Not Expressly Granted Herein. This License And Your Right To Use The Ebook Terminate Automatically If You Violate Any Part Of This Agreement. In The Event Of Termination, You Must Remove The Original And Any Copies Of The Ebook From All Your Devices.

4. Source Code Supplementary Material

Any Source Code Files Provided As A Supplement To The Book Are Freely Available To The Public For Download. Reuse Of The Code Is Permitted, In Whole Or In Part, Including The Creation Of Derivative Works, Provided That You Acknowledge That You Are Using It And Identify The Source: Title, Publisher And Year.

5. Limited Warranty

Manning Warrants That The Ebook Files, A Copy Of Which You Are Authorized To Download, Are Free From Defects In The Operational Sense That They Can Be Read By A Pdf Reader Or Epub Reader, Or Other. Except For This Express Limited Warranty, Manning Makes And You Receive No Warranties, Express, Implied, Statutory Or In Any Communication With You, And Manning Specifically Disclaims Any Other Warranty Including The Implied Warranty Of Merchantability Or Fitness Or A Particular Purpose. Manning Does Not Warrant That The Operation Of The Ebook Will Be Uninterrupted Or Error Free. If The Ebook Was Purchased In The United States, The Above Exclusions May Not Apply To You As Some States Do Not Allow The Exclusion Of Implied Warranties. In Addition To The Above Warranty Rights, You May Also Have Other Rights That Vary From State To State.

6. Limitation Of Liability

In No Event Will Manning Be Liable For Any Damages, Whether Arising For Tort Or Contract, Including Loss Of Data, Lost Profits, Or Other Special, Incidental, Consequential, Or Indirect Damages Arising Out Of The Use Or Inability To Use The Ebook.

7. General

This Agreement Constitutes The Entire Agreement Between You And Manning And Supersedes Any Prior Agreement Concerning The Ebook. This Agreement Is Governed By The Laws Of The State Of New York.


Author
J. Morris Chang
Binding
Paperback
Condition Type
New
Country Origin
USA
Edition
1
Gift Wrap
Yes
Leadtime to ship in days (default)
Usually Delivers in 15 days
Page
336
Publisher
Manning Publications
Year
2023
Find similar

No reviews found

Possibly you may be interested
  • Top Sellers of 2024
  • Popular Now
  • Recently Viewed