Accelerate deep learning and other number-intensive tasks with JAX, Google’s awesome high-performance numerical computing library.
In Deep Learning with JAX you will learn how to:
- Use JAX for numerical calculations
- Build differentiable models with JAX primitives
- Run distributed and parallelized computations with JAX
- Use high-level neural network libraries such as Flax and Haiku
- Leverage libraries and modules from the JAX ecosystem
The JAX numerical computing library tackles the core performance challenges at the heart of deep learning and other scientific computing tasks. By combining Google’s Accelerated Linear Algebra platform (XLA) with a hyper-optimized version of NumPy and a variety of other high-performance features, JAX delivers a huge performance boost in low-level computations and transformations.
Deep Learning with JAX is a hands-on guide to using JAX for deep learning and other mathematically-intensive applications. Google Developer Expert Grigory Sapunov steadily builds your understanding of JAX’s concepts. The engaging examples introduce the fundamental concepts on which JAX relies and then show you how to apply them to real-world tasks. You’ll learn how to use JAX’s ecosystem of high-level libraries and modules, and also how to combine TensorFlow and PyTorch with JAX for data loading and deployment.
About The Technology
The JAX Python mathematics library is used by many successful deep learning organizations, including Google’s groundbreaking DeepMind team. This exciting newcomer already boasts an amazing ecosystem of tools including high-level deep learning libraries Flax by Google, Haiku by DeepMind, gradient processing and optimization libraries, libraries for evolutionary computations, federated learning, and much more! JAX brings a functional programming mindset to Python deep learning, letting you improve your composability and parallelization in a cluster.
About The Book
Deep Learning with JAX teaches you how to use JAX and its ecosystem to build neural networks. You’ll learn by exploring interesting examples including an image classification tool, an image filter application, and a massive scale neural network with distributed training across a cluster of TPUs. Discover how to work with JAX for hardware and other low-level aspects and how to solve common machine learning problems with JAX. By the time you’re finished with this awesome book, you’ll be ready to start applying JAX to your own research and prototyping!
About The Author
Grigory Sapunov is a co-founder and CTO of Intento. He is a software engineer with more than twenty years of experience. Grigory holds a Ph.D. in artificial intelligence and is a Google Developer Expert in Machine Learning.
Ebook License
End-User Warranty And License Agreement
1. Grant Of License
Manning Has Authorized The Download By You Of An Unrestricted Number Of Copies Of The Electronic Book (Ebook) In Any Of The Available Formats. Manning Grants You A Nonexclusive, Nontransferable License To Use The Ebook According To The Terms And Conditions Herein. This License Agreement Permits You To Install The Ebook On Any And All Your Devices For Your Personal Use Only.
2. Restrictions
You Shall Not: (1) Share, Resell, Rent, Assign, Timeshare, Distribute, Or Transfer All Or Part Of The Ebook Or Any Rights Granted Hereunder To Any Other Person; (2) Duplicate The Ebook, Except For A Single Backup Or Archival Copy; (3) Remove Any Proprietary Notices, Labels, Or Marks From The Ebook; (4) Transfer Or Sublicense Title To The Ebook To Any Other Party.
3. Intellectual Property Protection
The Ebook Is Owned By Manning And Is Protected By United States And International Copyright And Other Intellectual Property Laws. Manning Reserves All Rights In The Ebook Not Expressly Granted Herein. This License And Your Right To Use The Ebook Terminate Automatically If You Violate Any Part Of This Agreement. In The Event Of Termination, You Must Remove The Original And Any Copies Of The Ebook From All Your Devices.
4. Source Code Supplementary Material
Any Source Code Files Provided As A Supplement To The Book Are Freely Available To The Public For Download. Reuse Of The Code Is Permitted, In Whole Or In Part, Including The Creation Of Derivative Works, Provided That You Acknowledge That You Are Using It And Identify The Source: Title, Publisher And Year.
5. Limited Warranty
Manning Warrants That The Ebook Files, A Copy Of Which You Are Authorized To Download, Are Free From Defects In The Operational Sense That They Can Be Read By A Pdf Reader Or Epub Reader, Or Other. Except For This Express Limited Warranty, Manning Makes And You Receive No Warranties, Express, Implied, Statutory Or In Any Communication With You, And Manning Specifically Disclaims Any Other Warranty Including The Implied Warranty Of Merchantability Or Fitness Or A Particular Purpose. Manning Does Not Warrant That The Operation Of The Ebook Will Be Uninterrupted Or Error Free. If The Ebook Was Purchased In The United States, The Above Exclusions May Not Apply To You As Some States Do Not Allow The Exclusion Of Implied Warranties. In Addition To The Above Warranty Rights, You May Also Have Other Rights That Vary From State To State.
6. Limitation Of Liability
In No Event Will Manning Be Liable For Any Damages, Whether Arising For Tort Or Contract, Including Loss Of Data, Lost Profits, Or Other Special, Incidental, Consequential, Or Indirect Damages Arising Out Of The Use Or Inability To Use The Ebook.
7. General
This Agreement Constitutes The Entire Agreement Between You And Manning And Supersedes Any Prior Agreement Concerning The Ebook. This Agreement Is Governed By The Laws Of The State Of New York.